Trigonometric Functions in NumPy
761 Views • Posted On Aug. 11, 2020
Prerequisite: Array Arithmetic Operations in NumPy
Apart from arithmetic operations, NumPy also gives us some very useful Trigonometric functions used in Data Analysis.
Trigonometric sin(), cos(), tan() functions in NumPy
Code
import numpy as np
# pi is in radians pi = np.pi np.sin(pi)
Output
Code
np.cos(pi)
Output
Code
np.tan(pi)
Output
Note: The values are computed to within machine precision, which is why values that should be zero do not always hit exactly zero.
sin(), cos() & tan() in NumPy Array
The Trigonometric sin(), cos() & tan() functions work exactly the same for NumPy array as they work for a single constant value.
Code
theta = np.array([0, pi/2, 3*pi/2, 2*pi]) np.sin(theta)
Output
Code
np.cos(theta)
Output
Code
np.tan(theta)
Output
Inverse Trigonometric Functions
The arcsin(), arccos() & arctan() functions in NumPy work as inverse functions for sin(), cos() & tan() respectively.
Code
x = np.array([-1, 0, 1]) np.arcsin(x)
Output
Code
np.arccos(x)
Output
Code
np.arctan(x)
Output
Share this tutorial with someone who needs it
Most Popular Tutorials in Data Science
Most Popular Tutorials on Asquero